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Synopsis
Some observed structure in the phonon dispersion curves in the [lll]-direction in Al is 

compared with theoretical calculations in a local potential approximation of the interaction 
between the ions and the conduction electrons. A previously derived expression for the lowest 
order non-diagonal part of the R.P.A. dielectric matrix is shown to account for most of the struc
ture. The same approximation of the imaginary part of the dielectric matrix is also shown to 
satisfactorily reproduce the observed phonon damping in the longitudinal mode.
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The accuracy of the neutron spectroscopy is by now so high that it is 
possible to obtain very detailed phonon dispersion curves. 11 has then 
been shown that in many metals there are rather complicated strucures 

in these curves that may contain much information about the microscopic 
situation in the crystal [1], [2], [3], [4], A closer analysis of this structure 
seems for that reason to be well worth while and in this short note we report 
some results of a comparison between some recent accurate experimental 
results (at 80°Æ) [4] and a theoretical model previously used in phonon 
calculations [5], [6]. As an example we will here concentrate on only one 
symmetry direction and this only for small q (the phonon momentum), 
where the analysis is relatively simple. A more complete account of the 
subject will be given elsewhere.

The phonon frequencies cof(ç) are in the harmonic approximation given 
of the three lowest eigenvalues to the dynamical matrix

= ^ô(ç,a>) • (1)

where ei is the phonon polarisation vector and 18.91 • 1()13 r/s in Al 
at 80°/<) is the plasma frequency for the ions. In a metal the matrix D is 
naturally split into an ionic part Di and an electronic part De, where in the 
local potential approximation of the unscreened ion-electron interaction the 
part De has the following form in a simple lattice

n z  1 f Y Ue(K' + q)ve(K'^q)(K^q)(K'^q)
e q,M [t>(K'+ç)i?(Æ"+tf)]1'2

1 . (2)
e2x(co)

• K' + q\-----------------\K' + <7>-similar terms with q = a> = 0>
1 + e2x(a>)

where K is a vector in the reciprocal lattice ve(k), i>(k) are the Fourier trans
forms of the ion-electron and electron-electron interactions (per unit charge 
square) and 1 + e2x(co) is the symmetrized dielectric matrix for the con
duction electrons with the elements in Eq. (2) in a plane wave representa
tion. It is the structure in the (/-dependence of these elements that is reflected 
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in the dispersion curves. For a uniform conduction electron system the 
dielectric matrix is diagonal in the plane wave representation and in the 
R.P.A.-approximation its elements are given by the Lindhard formula. The 
structure in /)<>(= I)eo hi that case) is then the structure pointed out by Koiin 
[7]. Inclusion of effects on the electron system from the periodic lattice 
potential gives a more general dielectric matrix containing also non-diagonal 
elements in the plane wave representation. In the R.P.A. approximation of 
x calculations indicate [6] that its diagonal elements (K' = K"') are in the 
actual case (nearly free electrons) quite accurately given by the Lindhard 
formula whereas the non-diagonal elements (K' K"), although much
smaller than the diagonal elements, are considerable. With x = xo + xi, 
where xo is the Lindhard matrix and xi is the important, purely non-diag
onal correction to it, we can expand De in Eq. (2) and get to first order in xi

I)e = l)eQ + Dei (3)

where we expect Dei to be responsible for much of the structure in the dis
persion curves [5], [6]. This opinion is supported by some of the experi
mental results in that the same observed peak has different signs in dif
ferent branches in the same direction. For the elements of xi the following 
lowest order expression was derived in [5]

A-o V(Æ) I
e2<Æ' + ç|xi|Æ"+ q> = [/;(Æ'+ç)?>(Æ"+g)]1/2 — - ----- ui(Æ,Æ + q) |

E0 ( t4)
(Ä" Æ")

where K = K" —K’, eo A’o— (~ 0.867 Ry in Al) is the Fermi energy lor 
2 m

the free electrons at T = 0 and V(Æ) is the Fourier coefficient of the effec
tive lattice potential for the electrons. ui(Æ,ç') (where q' = K’ + q) is the 
first order function that was discussed in [5], [6] in the zero 7' and adiabatic
(co = 0) limit.

m(K,q) 2(Z0 + ciZi)ln
1 +Zi
1 -Z1

+

+ 2(ciZo + Zi) In
ljbZo
C-Zo - 2C1Z3I11

lj+yZg
1 -Z3

+

+ sgn(D)|/R[/(- Z0,Zi,ci) - /(Zi,Z2,ci) - 

- Z(Z0,Z3,c3) + Z(Z2,Z3,c3)]!

where
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and

with

and

1 91 „ ,, „ r.—Z<i = Zo + IciZi
2 ko

Z3 =
|Æ+ç|
—— > C1

K Q . 2
I*|l9l’ 51

C3
Zq + C1Z1

I(a,b,c)

c - (ib — |/B(n, b, c) 
c — ab + [R((i,b, c)

if R(a,b,c) > 0

2 arc tg
c — rib

\/R(a,b,c)
if R(a,b,c) < 0

R (a, b, c) = a2 + b2 — 2 abc — 1 + c2; |/R(a, b, c) = \R(a, b, c) | 1/2

R = R{-Zo,Zv,cR)

Since the origin of ui is the first order effect from the lattice potential on the 
one-electron wave-functions but with still free particle one-electron energies 
it has a rather simple structure. It is axially symmetric about K and has 
a mirror plane in *2Kq' + K2 = 0. Its derivative V«>ui Is logarithmically 
singular on the “Fermi spheres” |ç'| = 2â-o and |Æ+ç'| = 2Å'o. More im
portant in our case is, however, that for |Æ| <2ko, Vs>ui is also singular 
on the shell where (K + ç')2 - 4Å-2 sin2 0 = 0 (0 is the angle between K and 
q'), if — K2 < K q < 0. This singularity is stronger (of power — 1 /2) which 
is the reason why the effects from these terms are observable at all in spite

V(Æ)
of the small expansion parameter---- (a few per cent) in Eq. (4).

co
The geometry in the reciprocal space with an elementary cell laid in 

for an actual case is shown in Fig. 1, where |Æ'| = |/3, [A“'| = 2 and 
|Æ| = |Æ" - Æ'| = |/3. K is in Fig. 1 the axis of symmetry in m and the 
traces in the half-plane of the “Fermi spheres” around O' and 0" are indicated. 
The trace of the shell with (K + ç')2 — 4Åo'sin 20 = 0 where \/q,ai is singular is 
also shown. Il is a circle with radius ko and its centre at M on the mirror 
plane. The three points of intersection with this shell for an actual q in 
the [111] (or equivalent) direction are denoted by 1, 3 and 4 (a point 2 
appears when |Æ'| = |Æ"| = |/3 and K = 2). Two Kohn points in I)eo for
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Fig. 1. The geometry in the reciprocal space showing a half-plane through the symmetry axis 
K in case |K'| = y3, = 2 and |JC| = \3. Full lines are in the plane and dashed lines are
out of the plane. The small open circles are some intersections with the shell {K + q')2 — 4kg 
sin26 = 0 for agin the [111] (or equivalent) direction. The dots A and B are the intersections 
with the “Fermi spheres” responsible for the Kohn anomalies in De0 from these vectors (B from 
K' = 1,1,1 and A from K' = 2, 0, 0 or equivalent). For the explanation of the circle ve(k) = 0, 

see the text.

this direction associated with the actual reciprocal lattice vectors are also 
denoted by A (one of three degenerate points) and B (non-degenerate). 
These four plus two points are the only critical points appearing in l)ei 
and Deo for a q in the interval we are considering here. Some characteristics 
of the indicated critical points are collected in Table I.

In Fig. 2 we have collected results of a calculation of the contribution

to the derivative ----  from terms of interest. Curve a in 111L and the curve
<4

Table 1.

Point Qx Typical K Typical K" 1*1
Number of 

critical 
terms in De

1 0.119 1, 1, 1 2, o, 0 y/3 2x3
2 0.157 1, 1, 1 - 1, 1, 1 2 2x3
3 0.164 1, 1, - 1 2, o, 0 V3 2x6
4 0.216 1, -1, -1 2, o, 0 p3 2x3
A 0.231 2, o, 0 3
B 0.302 1, 1, 1 1
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qx[2jt/a]
ADeFig. 2. Contributions to - — from the terms discussed in the text. Curve a in 11 IL and the curve

in full line in 111T give the contributions from non-diagonal terms in x with |K'| = y 3, |K’"| = 2
(or vice versa) and |K| = p'3 whereas curve b shows the contribution from terms with |K"| = 
|K"\ = y 3 and |K| = 2. The contributions from terms of interest in Deo are also shown (dashed).

AcoIn the figure are also the experimental — shown in the longitudinal mode (marked as x) with 
the value for q = 0 from G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 (1964). 
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in full line 111T show the effects from the terms in Dei of the type shown 
in Fig. 1 (i.e. IX'I = |/3, |Æ"| = 2 or vice versa and |K| = ^3) and curve 
b in H1L shows the effects from terms with |Æ'| = |Æ"| = j/3 and |Æ| = 2. 
The latter terms give no particular effects in the transverse mode in the 
actual ç-interval. In these calculations we have used the adiabatic and zero 
T function ui given in Eq. (5) and values on V(|/3) and F(2) given by 
Ashcroft [8] (i.e. V(|/3) = - 0.0179 and V(2) = - 0.0562 Ry), which 
seem to be the most reliable values available today. We have in Fig. 2 also 

dI)e0shown (dashed) the contributions to ----- from terms in Deo of interest
dq

(again in the adiabatic and zero 7’ limit). Curve A shows the contribution 
from terms with |Æ'| = 2, while the curve in 111T contains all vectors 

dDe0
\K'\<2. The curve B, finally, shows the effect in ------ from the single term

dq
K = (1, 1, 1), which explains why it is so oblique.

It is seen in Fig. 2 that the effects from the non-diagonal terms are quite 
comparable in size to those from I)eo although the terms themselves are 
much smaller. The reason for that is the earlier mentioned stronger sin
gularity in The peak 4 is, however, rather weak in the transverse
mode and almost invisible in the longitudinal mode due to a small factor 
ef(K' + q) there (can be seen in Fig. 1). We will comment on this excep
tion later on.

In Fig. 2 we also observe a small effect from the logarithmic singularity 
in Vîdh on the “Fermi spheres’’ in Fig. 1. Although small in the shown 
cases this is a significant effect, since it is present in many terms with for 
instance a fixed K’ and different K". It turns out that in the actual cases the 
effects to the Kohn anomalies from I)eo is drastically reduced by these small 
but coherent contributions from the non-diagonal terms (can be seen in 
Fig. 12 in Ref. [6]). In particular the cancellation of the peak A is almost 
complete in the longitudinal mode, which explains why no visible peak is 

Ao
found there in the experimental — shown in Fig. 2. This circumstance 

Ar/
excludes the possibility of a simple determination of Cg(2Ao) by a comparison 
to the experimental results around the Kohn points.

A more detailed analysis of the experimental results is shown in Fig. 3. 
We show there the experimental quantity (7 in 2.t/7/)

(6)



Nr. 10 9

Fig. 3. dexp - c (width cl = 0.2 and c? = 0.065) and dfh — c (with C|, = 0.06 and cp = 0.008) 
versus qx. The geometrical figures  AO indicate different experimental runs. The spread in 
the experimental values for different runs gives an idea of the accuracy. Experimental elastic 
values (with 1.5 per cent error bars) are from the reference in Fig. 2. The dots give theoretical 

values when the critical part in the analytic is replaced by a Monte Carlo sum.

which means that we determined (the real part of) the experimental eigen
values of D(q) by use of Eq. (1). These eigenvalues are in Eq. (6) divided 
by g2 in order to get a more stable function in Fig. 3, where dexp(q) - const, 
(const. = 0.2 in the L-mode, = 0.065 in the T-mode) is plotted. The ex
perimental curves are seen to contain interesting structures not present in 
Deo. From Di and Deo in Eq. (1) we expect a dexp which, as a function of q,
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starts out rather constant or weakly increasing op to the broad humps just 
outside the Kohn points in /To after which the curve would rapidly decrease 
(can be qualitatively seen in Fig. 6 and Fig. 17 in [6]). However, as is seen 
in the figure, the experimental curves have quite different shapes. The rapid 
decrease starts much earlier and when compared to the theoretical curves 
also given in Fig. 3, the behaviour of the experimental and theoretical 
curves are seen to be very similar. Although the broad humps from the 
Kohn points in I)eo are visible in dexp (al least in the longitudinal mode) 
they are much smaller than expected due to the earlier mentioned cancella
tions. In the theoretical curves shown in Fig. 3 we have calculated the 
(zero T and adiabatic) contribution to

dth(q) =
^ei(q) 

q2 (7)

(and subtracted a const. = 0.06 in the L-mode, = 0.008 in the T-mode) 
where we in I)ei included only terms that give an appreciable structure in 
the actual ç-interval (and keep the cubical symmetry of Dei) i.e. the terms 
with 0 < |Æ'I,|Æ"I and |Æ| < 2. A precise comparison between the theoretical 
and experimental curves in Fig. 3 is for that reason not possible, since we 
have to add to dth a smooth function (out to the Kohn points in /To) in 
order to get the total dth- This smooth function would, however, not alter 
the structure in the interesting (/-interval.

Unfortunately, the experimental errors in the longitudinal mode increase 
so rapidly for decreasing q that the expected decrease in dexp to the elastic 
limit [9] is not possible to establish, but in the transverse mode this effect 
is clearly seen. Anyway, the non-diagonal terms kept in dth in the longitudinal 
mode here (only 72 out of about 104 almost equally important terms) give 
a surprisingly large contribution. (The situation is similar in the other sym
metry directions.) So is for instance at (/ = 0 this contribution about 0.12 
compared to the elastic value on dexp^0.30 with interesting implications 
to the elastic properties.

We have in Fig. 3 also given results (marked by dots) of a calculation 
where close to lhe critical point in the analytic m we have replaced the 
critical contribution to the integral defining m from the occupied electron 
states around the actual zone-plane by a Monte Carlo sum and in this sum 
used the correct one-particle energies (up to first order in the periodic 
potential). Details of this calculation will be given elsewhere.

The effect in the transverse mode from the critical point 4 is of particular 
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interest. Several experimental runs have established this effect (results of 
only two runs are shown in Fig. 3) and we have in fact used this peak when 
determining the function ne(Å') used in these calculations. It turned out 
that the functions ve(k) used in earlier calculations [6] gave a (weak but) 
negative peak there. This was a consequence of the fact that the earlier 
functions had the first zero rather far out (at Àç^l.7). In order to remove 
this defect we had to adjust the first zero in ue(A’) to a somewhat smaller 
value on k. This change made them almost identical with one of the functions 
used by Vosko et al. [10]. Awaiting a direct experimental determination of 
the k-value where ue(Â’) is equal zero we have—so far—determined ne(Â) 
by fitting our function F(k)

1 u2e(k)k2 e2x0(k)
F(k) = — - -------------~ (8)

4:71 u(k) 1 + e2xo(k)

at Â’ = 2.5 to the value of the corresponding function Fo(Â) in [10]. We 
think this can be of theoretical interest since their value at this point (they 
manipulate their values for smaller Å) has a first principle calculation as a

to a function ue(Å') used in [6] (potential 3 there). In Fig. 4 we have com
pared the different functions F(Å) in the interval of interest (1.6 < k < 2.25). 
The zero in ve(k) is seen to be shifted from Â'^1.7 to k 1.62 by the ad
justment. We have in Fig. 1 drawn the circle around 0' where the used 
Ue(Å') is zero and it is seen there how close the critical point 4 is to this circle.

Fig. 4. The function F(/c) obtained with the potential at.(Zc) used in these calculations (upper 
curve at 7c = 2.5) compared to the function with a potential used in an earlier calculation.

The small circles are estimated values from [10].
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qx[2jr/a]
Fig. 5. Experimental and theoretical values for the phonon damping at small q in the 111L 
branch. In the theoretical curve only the electronic contribution is shown, but the anharmonic 

contribution is small for these (/-values at this temperature (80°K).

Finally, the new measurements have shown that the earlier reported 
experimental life-times r at 80°K [11] for the phones in Al are somewhat 
too short. The new experimental results for small q in the 111 L-mode in 
Al are shown in Fig. 5. The curves show the theoretical residts when the 
function ve(k) and V(Æ) : s used in the other calculations here are put in 
the expression given in [12]. In the imaginary part of x the non-diagonal 
terms included are again only those with |Æ'|,|Æ"| and |Æ| <2, but here 
we have also included the important terms with |Æ'| or |Æ"| = 0 (|Æ| =/= 0). 
The terms considered give in this case almost the entire contribution (the 
corrections from the remaining terms in Imx. are only of order a few per cent). 
The free electron part (dashed) is here, naturally, almost identical with the 
results given by Björkman et al. [13]. Considering the large uncertainties 
in both the experimental and theoretical results the agreement is seen to be 
remarkable good in this q interval, where the anharmonic contributions to 
the damping are small [14], In particular there is some structure in the oh- 
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served results at the lower q end which we think might have observable ef
fects on the temperature dependency of the resistance These effects on the 
resistance from the imaginary part of x would correspond to the effects 
on the specific heat from the structure in the real part of x [15].

I want to thank Dr. R. Stedman and Professor J. Weymouth for making 
their experimental results available to me prior to their publication. My 
special thanks are due to Dr. R. Stedman for his patient answers to many 
questions about the experimental technique and difficulties.

NORDITA, Copenhagen, Denmark
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